Discrete Particle Swarm Optimization for TSP: Theoretical Results and Experimental Evaluations
نویسندگان
چکیده
Particle swarm optimization (PSO) is a nature-inspired technique originally designed for solving continuous optimization problems. There already exist several approaches that use PSO also as basis for solving discrete optimization problems, in particular the Traveling Salesperson Problem (TSP). In this paper, (i) we present the first theoretical analysis of a discrete PSO algorithm for TSP which also provides insight into the convergence behavior of the swarm. In particular, we prove that the popular choice of using “sequences of transpositions” as the difference between tours tends to decrease the convergence rate. (ii) In the light of this observation, we present a new notion of difference between tours based on “edge exchanges” and a new method to combine differences by computing their “centroid.” This leads to a more PSO-like behavior of the algorithm and avoids the observed slow down effect. (iii) Then, we investigate implementations of our methods and compare them with previous implementations showing the competitiveness of our new approaches.
منابع مشابه
Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)
Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...
متن کاملA discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain
This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational pa...
متن کاملDiscrete Particle Swarm Optimization for TSP based on Neighborhood
Particle swarm optimization (PSO) is a kind of evolutionary algorithm to find optimal solutions for continuous optimization problems. Updating kinetic equations for particle swarm optimization algorithm are improved to solve traveling salesman problem (TSP) based on problem characteristics and discrete variable. Those strategies which are named heuristic factor, reversion mutant and adaptive no...
متن کاملA Particle Swarm Optimization Based on Evolutionary Game Theory for Discrete Combinatorial Optimization
This paper presented a new particle swarm optimization based on evolutionary game theory (EPSO) for the traveling salesman problem (TSP) to overcome the disadvantages of premature convergence and stagnation phenomenon of traditional particle swarm optimization algorithm (PSO). In addition ,we make a mapping among the three parts discrete particle swarm optimization (DPSO)、 evolutionary game the...
متن کاملA Discrete Artificial Bee Colony Algorithm for TSP Problem
In this paper, a new discrete artificial bee colony algorithm is used to solve the symmetric traveling salesman problem (TSP). The concept of Swap Operator has been introduced to the original artificial bee colony (ABC) algorithm which can help the bees to generate a better candidate tour by greedy selection. By taken six typical TSP instances as examples, the proposed algorithm is compared wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011